
Quantum Machine Learning Algorithms: Read the Fine Print

Scott Aaronson

For twenty years, quantum computing has been catnip to science journalists. Not only would a quantum
computer harness the notorious weirdness of quantum mechanics, but it would do so for a practical purpose:
namely, to solve certain problems exponentially faster than we know how to solve them with any existing
computer. But there’s always been a catch, and I’m not even talking about the difficulty of building
practical quantum computers. Supposing we had a quantum computer, what would we use it for? The
“killer apps”—the problems for which a quantum computer would promise huge speed advantages over
classical computers—have struck some people as inconveniently narrow. By using a quantum computer,
one could dramatically accelerate the simulation of quantum physics and chemistry (the original application
advocated by Richard Feynman in the 1980s); break almost all of the public-key cryptography currently used
on the Internet (for example, by quickly factoring large numbers, with the famous Shor’s algorithm [14]);
and maybe achieve a modest speedup for solving optimization problems in the infamous “NP-hard” class
(but no one is sure about the last one). Alas, as interesting as that list might be, it’s hard to argue that it
would transform civilization in anything like the way classical computing did in the previous century.

Recently, however, a new family of quantum algorithms has come along to challenge this relatively-
narrow view of what a quantum computer would be useful for. Not only do these new algorithms promise
exponential speedups over classical algorithms, but they do so for eminently-practical problems, involving
machine learning, clustering, classification, and finding patterns in huge amounts of data. So, do these
algorithms live up to the claims? That’s a simple question with a complicated answer.

The algorithm at the center of the “quantum machine learning” mini-revolution is called HHL [9], after
my colleagues Aram Harrow, Avinatan Hassidim, and Seth Lloyd, who invented it in 2008. Many of
the subsequent quantum learning algorithms extend HHL or use it as a subroutine, so it’s important to
understand HHL first. (See also a Nature News & Views piece by Childs [5].)

HHL attacks one of the most basic problems in all of science: namely, solving a system of linear equations.
Given an n× n real matrix A and a vector b, the goal of HHL is to (approximately) solve the system

Ax = b

for x, and to do so in an amount of time that scales only logarithmically with n, the number of equations
and unknowns. Classically, this goal seems hopeless, since n2 steps would be needed even to examine all
the entries of A, and n steps would be needed even to write down the solution vector x. By contrast, by
exploiting the exponential character of the wave function, HHL promises to solve a system of n equations
in only about logn steps. But does it really do so? This is one case where it’s important to read the fine
print.

Briefly, the HHL algorithm “solves Ax = b in logarithmic time,” but it does so only with the following
four caveats, each of which can be crucial in practice.

(1) The vector b = (b1, . . . , bn) somehow needs to be loaded quickly into the quantum computer’s memory,
so that we can prepare a quantum state |b〉 =

∑n
i=1

bi |i〉, of log2 n quantum bits (or qubits), whose
n amplitudes encode b’s entries. (Here, I assume for simplicity that b is a unit vector.) At least in
theory, this can be done using a “quantum RAM”: that is, a memory that stores the classical values
bi, and that allows them all to be read at once, in quantum superposition. Even then, however, it’s
essential either that b is relatively uniform, without a few bi’s that are vastly larger than the others,1

1If the HHL algorithm could be adapted to the case where (say) a single bi is 1 and all the others are 0, then it would
contradict the impossibility of an exponential speedup for black-box quantum search, which was proved by Bennett, Bernstein,
Brassard, and Vazirani [3].

1

or else that the quantum RAM contains (say) the partial sums
∑j

i=1
b2i , or pointers to b’s large entries,

rather than just the bi’s themselves. Alternatively, if b is described by a simple, explicit formula, then
the quantum computer might be able to prepare |b〉 quickly for itself, without needing to consult a
quantum RAM. Either way, though, if preparing |b〉 already takes nc steps for some constant c, then
the exponential speedup of HHL vanishes in the very first step.2

(2) The quantum computer also needs to be able to apply unitary transformations of the form e−iAt,
for various values of t. If the matrix A is sparse—that is, if it contains at most s nonzero entries
per row, for some s ≪ n—and if there’s a quantum RAM that conveniently stores, for each i, the
locations and values of row i’s nonzero entries—then it’s known that one can apply e−iAt in an amount
of time that grows nearly linearly with s [4]. There are other special classes of matrix A for which a
quantum computer could efficiently apply e−iAt. Again, though, if applying e−iAt takes nc time for
some constant c, then the exponential speedup of HHL disappears.

(3) The matrix A needs to be not merely invertible, but robustly invertible, or “well-conditioned.” More
precisely, let κ = |λmax/λmin| be the ratio in magnitude between A’s largest and smallest eigenvalues.
Then the amount of time needed by HHL grows nearly linearly with κ. If κ grows like nc, then the
exponential speedup is gone.

(4) Finally, the limitation noted earlier—that even writing down the solution vector x = (x1, . . . , xn)
already requires n steps—also applies in the quantum world. When HHL is finished, its output is not
x itself, but rather a quantum state |x〉 of log2 n qubits, which (approximately) encodes the entries
of x in its amplitudes. The quantum computer user can then measure |x〉, in a basis of her choice,
to reveal some limited statistical information about x: for example, the locations of any extremely
large entries of x, or the approximate value of an inner product 〈x|z〉, where z is some fixed vector.
However, learning the value of any specific entry xi will, in general, require repeating the algorithm
roughly n times, which would once again kill the exponential speedup.

To summarize, HHL is not exactly an algorithm for solving a system of linear equations in logarithmic
time. Rather, it’s an algorithm for approximately preparing a quantum superposition of the form |x〉, where
x is the solution to a linear system Ax = b, assuming the rapid ability to prepare the state |b〉 and to apply
the unitary transformation e−iAt, and using an amount of time that grows roughly like log (n) · κs/ε, where
n is the system size, κ is the system’s condition number, s is its sparsity, and ε (which I didn’t mention
before) is the desired error.

For all that, couldn’t the HHL algorithm still be useful for something? Absolutely—as long as one can
address all the caveats, and explain why they’re not fatal for one’s desired application. To put it differently,
perhaps the best way to see HHL is as a template for other quantum algorithms. One puts flesh onto the
template by showing how to prepare |b〉, apply e−iAt, and measure |x〉 in a specific case of interest, and then
carefully analyzing the resulting performance against that of the best known classical algorithm for that
case.

To my knowledge, so far there has been one attempt to work out a potential application of the HHL
template from start to finish. Namely, Clader, Jacobs, and Sprouse [6] argued that HHL could be used to
speed up the calculation of electromagnetic scattering cross-sections, for systems involving smooth geometric
figures in 3-dimensional space. To do this, Clader et al. needed to verify, not merely that solving Maxwell’s
equations can be reduced to solving a linear system Ax = b, but also that (1) the appropriate matrix A is
sparse; (2) at least from numerical data, the condition number κ appears to be bounded, at least if careful
“preconditioning” is done; (3) provided the object is regular, one can calculate the entries of A and prepare
the state |b〉 explicitly, avoiding the need for a quantum RAM; and (4) one really is interested in specific
observables of the solution vector x; one doesn’t need the entire vector (x1, . . . , xn).

2One reason why preparing |b〉 could take nc steps, is memory latency in the quantum RAM. The strongest argument for
ignoring this concern is that people also typically ignore memory latency when analyzing classical algorithms.

Note also that, for the speedup to be genuine, the quantum RAM needs to be “passive”: that is, it must not require a
separate parallel processing element for each number that it stores. For if it did, then by dividing the work among the parallel
processors, we could solve a system of the form Ax = b in O

(

log2 n
)

steps purely classically [7], with no quantum computer
needed.

2

Crucially, Clader et al. could not rule out the possibility that, once the problem of solving a linear system
has been restricted in all these ways, there’s also a classical algorithm that provides the answer in nearly
the same amount of time as HHL. The most they could say was that they couldn’t find such a classical
algorithm. The difficulty here is a general one: in quantum algorithms research, we always want to compare
against the fastest possible classical algorithm that performs the same task. But if we are honest, the “task”
here cannot be defined as solving an arbitrary linear system Ax = b, because HHL can’t do that either. The
task, rather, needs to be defined as estimating certain observables of x, for certain special systems Ax = b
such that HHL can efficiently estimate the same observables. And that makes it far less obvious whether
there might be a clever classical solution as well.3

Harrow et al. [9] did prove one important result indicating that there are at least some cases where
HHL runs in logarithmic time, whereas any possible classical algorithm requires polynomial time. Namely,
they showed that HHL is “universal for quantum computation.” What this means is that we can encode
any quantum algorithm—say, Shor’s factoring algorithm—into a system of roughly 2n linear equations in
2n unknowns, and then use HHL to “solve” the system (i.e., simulate the algorithm) in polynomial time.
Thus, provided we believe any quantum algorithm achieves an exponential speedup over the best possible
classical algorithm, HHL can in principle achieve such a speedup as well. On the other hand, the linear
systems produced by this reduction will be extremely artificial. The essential insight behind the exponential
speedup, one might argue, is provided by Shor’s algorithm or whatever other quantum algorithm we are
simulating, rather than by HHL itself.

In the years since HHL, quantum algorithms achieving “exponential speedups over classical algorithms”
have been proposed for other major application areas, including k-means clustering [11], support vector
machines [13], data fitting [16], and even computing certain properties of Google PageRank vectors [8]. It’s
fair to say that all of these algorithms inherit many of the caveats of HHL. With each of them, one faces
the problem of how to load a large amount of classical data into a quantum computer (or else compute the
data “on-the-fly”), in a way that is efficient enough to preserve the quantum speedup. With each, one faces
the problem that, even if the output state |ψ〉 implicitly encodes all the data one wants in its amplitudes, a
measurement of |ψ〉 reveals only a tiny probabilistic sketch of the information. Most importantly, with each
algorithm, one faces uncertainty about whether, after one has properly accounted for the other caveats, one
could then find a classical sampling algorithm that achieves similar performance to the quantum algorithm’s.

To illustrate these issues, let’s consider a 2013 algorithm of Lloyd, Mohseni, and Rebentrost [11] for
supervised machine learning. In this task, we are given a quantum state |u〉 of log2 n qubits—or equiva-
lently, a vector of n amplitudes—as well as two “clusters” of other states, |v1〉 , . . . , |vm〉 and |w1〉 , . . . , |wm〉.
The problem is to classify |u〉 into one of the two clusters, by deciding which mean it is closer to: |v〉 =
(|v1〉+ · · ·+ |vm〉) /m or |w〉 = (|w1〉+ · · ·+ |wm〉) /m. Lloyd et al. [11] give an extremely fast quantum
algorithm for this problem: in particular, they show how to estimate the inner products 〈u|v〉 and 〈u|w〉,
to accuracy ε, using only about log (mn) /ε steps. They argue that this represents an exponential speedup
over classical inner-product computation.

The trouble is, where did we get the states |u〉 , |vk〉 , |wk〉 in the first place? The obvious possibility
would be that we prepared the states ourselves, using lists of amplitudes written in a quantum RAM. In
that case, however, a straightforward preparation strategy would work only if the amplitudes are relatively
uniform: if there aren’t a few amplitudes that dominate all the others in magnitude. But if the amplitudes
are uniform in the required way, then it’s not hard to show that we can also estimate the inner products
〈u|v〉 and 〈u|w〉 using a classical random sampling algorithm, in about log (mn) /ε2 steps! In other words,
once we carefully spell out conditions under which the quantum algorithm would be useful, we find—at least
in this example—that a classical algorithm exists that is at most quadratically slower.

Admittedly, the above argument doesn’t rule out that there could be other ways to generate the states
|u〉 , |vk〉 , |wk〉, and that with those other ways, the exponential quantum speedup would stand. And indeed,
Lloyd et al. cite a 2009 result of mine [1], which shows that if our task was to estimate 〈u|F |v〉, where F is

3Similarly, Wang [15] has used HHL to give a quantum algorithm for approximating effective resistances in electrical networks.
Again, Wang’s algorithm could give an exponential speedup over classical algorithms, but only under special conditions: for
example, that the electrical network has small degree but a large amount of interconnectivity (technically, “large expansion”);
and that a description of the electrical network can be quickly loaded into the quantum computer (for example, because the
network has a regular pattern). And it is not yet clear whether there are real-world examples where (a) these conditions are
satisfied, but (b) there isn’t also a fast classical algorithm to approximate the effective resistances.

3

an n× n unitary matrix that applies a Fourier transform, then any classical algorithm would need at least
about n1/4 steps. (In subsequent work by myself and Ambainis [2], we improved this lower bound to at
least about

√
n/ logn steps, nearly matching an upper bound of

√
n steps.) On the other hand, a quantum

computer can estimate 〈u|F |v〉 just as easily as it can estimate 〈u|v〉, in only a logarithmic number of steps.
To put it differently, if one of two vectors that we want to compare is given to us not directly, but only via
its Fourier transform, then we really do get an exponential quantum speedup in comparing the vectors.

Even here, however, care is needed. The theorem that Ambainis and I proved—which rules out a
superfast classical algorithm to compare one vector u written in memory, against the Fourier transform of a
second vector v written in memory—applies only if u and v are both random when considered individually.
Furthermore, we still have the issue mentioned before: that a quantum computer can estimate 〈u|F |v〉 in
logarithmic time only if it can quickly prepare the states |u〉 and |v〉. And to do that, starting from lists
of entries (u1, . . . , un) and (v1, . . . , vn) in a quantum RAM, we need the vectors to be reasonably uniform;
neither u nor v can have sharp “peaks.” Take away either of these conditions, and the exponential quantum
speedup can once again disappear.

The general rule here is: if we want an exponential quantum speedup, then we need there to be an
extremely fast way to create a certain kind of superposition, and we also need there not to be a fast way
to create an analogous probability distribution using a classical computer. The Fourier transform is one
convenient way to achieve both of these goals: it can foil classical sampling methods because of its “global”
nature, while causing no problems for a quantum computer. But quantum algorithm designers have other
tricks up their sleeve.

This past summer, Lloyd, Garnerone, and Zanardi [10] proposed a polynomial-time quantum algorithm
for estimating certain topological features of data: most notably Betti numbers, which count the number
of holes and voids of various dimensions in a scatterplot. What is notable about their algorithm is that
its input consists of only n (n− 1) /2 real numbers—namely, the distances between each pair of points out
of n—but using that data, the algorithm constructs a quantum superposition over up to 2n simplices in a
simplicial complex. In other words, much like the algorithm of Clader et al. [6] for electromagnetic cross
sections, the new algorithm avoids the expensive need to load in a huge amount of data from a quantum
RAM; instead it computes the data as needed from a much smaller input. The Betti number algorithm still
has a significant drawback: preparing a superposition over simplices takes a number of steps that grows like
√

2n/S, where S is the total number of simplices in the complex. So if S is much smaller than 2n, as it
will often be in practice, the algorithm can require exponential time. Even so, the ability to estimate Betti
numbers efficiently when S ≈ 2n provides a good example of how the limitations of HHL-type algorithms
can sometimes be overcome.

So in summary, how excited should we be about the new quantum machine learning algorithms? To
whatever extent we care about quantum computing at all, I’d say we should be excited indeed: HHL and
its offshoots represent real advances in the theory of quantum algorithms, and in a world with quantum
computers, they’d probably find practical uses. But along with the excitement, we ought to maintain a
sober understanding of what these algorithms would and wouldn’t do: an understanding that the original
papers typically convey, but that often gets lost in secondhand accounts.

The new algorithms provide a general template, showing how quantum computers might be used to
provide exponential speedups for central problems like clustering, pattern-matching, and principal component
analysis. But for each intended application of the template, one still needs to invest a lot of work to see
whether (a) the application satisfies all of the algorithm’s “fine print,” and (b) once we include the fine
print, there’s also a fast classical algorithm that provides the same information. This makes the quantum
machine learning algorithms quite different from (say) Shor’s factoring algorithm. Having spent half my
life in quantum computing research, I still find it miraculous that the laws of quantum physics let us solve
any classical problems exponentially faster than today’s computers seem able to solve them. So maybe it
shouldn’t surprise us that, in machine learning like anywhere else, Nature will still make us work for those
speedups.

Acknowledgments: Thanks to Andrew Childs, Aram Harrow, Greg Kuperberg, Daniel Lidar, Seth
Lloyd, and Masoud Mohseni for helpful comments on this piece.

4

References

[1] S. Aaronson. BQP and the polynomial hierarchy. In Proc. ACM STOC, 2010. arXiv:0910.4698.

[2] S. Aaronson and A. Ambainis. Forrelation: a problem that optimally separates quantum from classical
computing. arXiv:1411.5729, 2014.

[3] C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of quantum com-
puting. SIAM J. Comput., 26(5):1510–1523, 1997. quant-ph/9701001.

[4] D. W. Berry, A. M. Childs, and R. Kothari. Hamiltonian simulation with nearly optimal dependence
on all parameters. arXiv:1501.01715, 2015.

[5] A. M. Childs. Quantum algorithms: Equation solving by simulation. Nature Physics, 5(12):861, 2009.

[6] B. D. Clader, B. C. Jacobs, and C. R. Sprouse. Preconditioned quantum linear system algorithm. Phys.
Rev. Lett., 110(250504), 2013. arXiv:1301.2340v4.

[7] L. Csanky. Fast parallel matrix inversion algorithms. SIAM J. Comput., 5(4):618–623, 1976.

[8] S. Garnerone, P. Zanardi, and D. A. Lidar. Adiabatic quantum algorithm for search engine ranking.
Phys. Rev. Lett., 108(230506), 2012. arXiv:1109.6546.

[9] A. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for solving linear systems of equations.
Phys. Rev. Lett., 15(150502), 2009. arXiv:0811.3171.

[10] S. Lloyd, S. Garnerone, and P. Zanardi. Quantum algorithms for topological and geometric analysis of
big data. arXiv:1408.3106, 2014.

[11] S. Lloyd, M. Mohseni, and P. Rebentrost. Quantum algorithms for supervised and unsupervised machine
learning. arXiv:1307.0411, 2013.

[12] S. Lloyd, M. Mohseni, and P. Rebentrost. Quantum principal component analysis. Nature Physics,
10(9), 2014. arXiv:1307.0401.

[13] P. Rebentrost, M. Mohseni, and S. Lloyd. Quantum support vector machine for big data classification.
Phys. Rev. Lett., 113(130503), 2014. arXiv:1307.0471.

[14] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM J. Comput., 26(5):1484–1509, 1997. Earlier version in IEEE FOCS 1994. quant-
ph/9508027.

[15] G. Wang. Quantum algorithms for approximating the effective resistances in electrical networks.
arXiv:1311.1851, 2013.

[16] N. Wiebe, D. Braun, and S. Lloyd. Quantum algorithm for data fitting. Phys. Rev. Lett., 109(050505),
2012. arXiv:1204.5242.

5

